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Some fundamental works whose authors propose formulas to calculate
the thermal conductivities of granular materials are presented.

Knowledge of thermophysical properties of granular
materials is necessary to solve problems in the most
diverse branches of science and engineering. The
range of application for granular materials is unusu-
ally broad. Granular materials are encountered in the
food and cryogenics industries, in foundry work, and
in structural engineering. They have gained extensive
acceptance as effective heat insulators.

Despite the numerous attempts to derive a theoret-
ical formula to calculate the thermal conductivities of
granular materials {1, 2], this problem cannot yet be
regarded as having been resolved. It is therefore use~
ful to analyze the basic theoretical research in this
field and to establish the directions for future work,

1. Various Models of the Granular System, The
transfer of heat in dry granular materials is achieved
through the following simultaneous processes: molec-
ular gas conductivity in the spaces between particles;
convection in the gas interlayers; radiation; conduc-
tion through the solid particles, as well as conduction
from particle to particle, through direct contact be-
tween them,

Virtually all the proposed formulas for the calcula-
tion of the effective thermal conductivities of granular
materials have been derived on the basis of the simu-
lation of real structures. The applicability of a given
formula is governed by the correlation existing be~
tween the adopted model and the real structure, as
well as by consideration of all means of heat transfer.

Below, as part of a historical review, we examine
some basic models proposed by various authors. Anal-
ysis of these projects demonstrates that in studying
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Fig. 1. Various models of granular material,

Infinite plates normal (a) and parallel (b) to

heat flow; system of bars p< 50% (¢) and p >

> 50% (d); system of cubes (e}, spheres with
cubic (f) and tetrahedral (g).

the processes of heat transfer through granular ma-
terials most of the authors—in explicit or implicit
form—proceeded in the following natural ways:

a) Some structure of an unbounded granular medium
was selected, with the assumption that the structure
is ordered or, in other words, the structure of the
granular medium exhibits a long-range order [3].
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Fig. 2. Comparison of experimental
data on effective thermal conductivity
of granular materials (hatched region)
with calculations according to formu-
las by Krischer (a,b), Bernstein (c,
¢',d), Russel (e) and Nekrasov (f).
The case Ag/Ag = 100 is considered.

b) An elementary cell—that least volume whose rep-
etition in some specific manner for an infinite number
of times will yield the original medium with long-range
order—is isolated within the medium exhibiting long-
range order. It is not difficult to demonstrate that the
effective thermal conductivity of the elementary cell is
equal to the effective thermal conductivity of the entire
medium with long-range order.

With this approach to the analysis of the heat-trans-
fer processes through a granular system, the following
assumption is adopted: the effective thermal conduc~-
tivity of a real (statistical) granular system is equal
to the effective thermal conductivity of a system with
an ordered structure, if the coefficients of thermal
conductivity for the components and of their concen-
trations are identical for both the real and the ordered
systems,

It is obvious that the success of the investigation
depends in great measure on the extent to which the
selected model of the granular system matches the
real structure. The primary attention in the review is
therefore centered on the models of a granular system
proposed by the various authors, We will consider only
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such models which differ significantly from each other,
It may be that individual models are excluded from
our examination,

Many authors treat granular materials as systems
of solid barriers separated by layers of air. The great-
est insulating effect is found when an interlayer of air
is placed perpendicular to the direction of the heat -
flow (Fig. 1a). The least insulating effect occurs when
the air interlayer is in the direction of the heat flow
(Fig. 1b). The formulas for the calculation of the effect
of thermal conductivity, corresponding to these two
cases, are cited in many sources and are of the fol-
lowing form [4, 5]:
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For the relationship 7\3/7\g = 100 (particles of min-
eral origin in air) these functions are given graphically
in Fig. 2 {(curves a and b). Here we also see the region
of experimental values for the effective coefficient of
thermal conductivity in granular materials of mineral
origin (cross-hatched) [1,2,5—8]. As we can see, the
proposed model is somewhat too far removed from the
real structure of granular materials.

Bernshtein [9] developed this model somewhat,
treating the granular material as a system consisting
of unbounded bars placed in a staggered array (Fig. lc,
d). The thermal-conductivity coefficients in this model
are calculated on the basis of the following formulas:

Aot _ 4p 4 e 100—2p
Ag 100( 1+ Q) Ag 100
As
p < 50%, (2a)

hegr _ 4(100—p) 2p — 100

he 100(1+1‘£) 100

s/

p>50%. (2b)

The functions proposed by Bernshtein are shown graph-
ically by the dashed lines ¢ and d (Fig. 2). The ex-
perimental results are found considerably below the
top of the curve (p < 50%). The author explains this by
the thermal resistance of the thinnest of the air inter-
layers between the plates at the points at which they
are in contact, these interlayers resulting from the
roughness of the plates. Calculation with consideration
of these clearances yields the ¢' branch,

A divergence between the experimental and theo-
retical values that is approximately the same as in the
previous cases is given by the Russel model. The au-
thor proposes the treatment of the granular material
as solid cubes linked to each other by the air inter-
layers (Fig. le), i.e., he assumes an absence of con-
tact and the existence of open pores, even with low
porosity values. The Russel formula has the form [10]
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Figure 2e shows a graphical representation of this
function for Ag/Ag = 100.

In most of the remaining works devoted to this ques
tion the granular material is regarded as a system of
spherical particles of the same size, positioned in a
variety of ways. This model apparently best approxi-
mates real structures. Certain of the authors proceed
from the assumption that the spherical particles are
positioned in accordance with the law of cubic sym-
metry while others assume the particles to be densely
packed, i.e., they assume a tetrahedral arrangement.
Regardless of the arrangement, porosity is indepen-
dent of sphere size; it is assumed that the thermal
properties of the particles are identical in all direc~
tions.

The cubic system is constructed so that the lines
connecting the centers of eight adjacent spheres form
the faces of the cube. Each particle has six contacts
with the other spheres; in the pore between eight of
the particles it is possible to inscribe a sphere whose
radius is equal to 0.73r, where r is the particle ra-
dius. Air occupies 47.67% of the total volume in sucha
system [3]. Figure 1f shows a single layer of this ar-
rangement. A large quantity of air and a relatively
small number of contacts with the surrounding par-
ticles make the cubic system unstable. The tetrahe-
dral arrangement is denser, with the lines connecting
the centers of three adjacent spheres forming an equi-
lateral triangle (Fig. 1g). The center of the sphere in
the next layer is situated above the center of this tri-
angle. Each sphere in the arrangement has twelve
contacts with the surrounding spheres; the volume of
the spaces makes up 25.95% of the total volume. This
is a denser form of the arrangement [3].

The cubic arrangement of the particles in the study
of the thermal conductivities of a granular system was
adopted by Pokrovskii [11], Schumann and Voss [12],
Nekrasov [13], Franchuk [14], et al. The most widely
disseminated formula for such a model is the one pro-
posed by Nekrasov:

et 30 hs  90—p o0 (4)
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Formula (4) yields a virtually rectilinear relation-
ship between the coefficient of thermal conductivity
and the porosity of the material (Fig. 2f), whereas
the experimental function is different in nature. More-
over, in deriving the formulas Nekrasov took into con-
sideration only the resistance of the solid particles
and ignored entirely the resistance of air spaces. As
a result, the effective coefficient of thermal conduc-
tivity for the granular materials is proportional to the
thermal-conductivity coefficient for the material of the
particles, which is also not confirmed by the experi-
ments. The experiments show that for a given porosity
of the granular systems consisting of various mate-
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rials, the effective thermal conductivity coefficients

do not differ from each other as markedly as the Ay of
the actual materials. This is explained by the relatively
small role played by contact-heat transfer in the over-
all heat-transfer process in granular materials under
normal pressure of the filler gas.

The tetrahedral arrangement is more stable than
the cubic and, consequently, more probable; here the
spherical particles are positioned in the densest pos-
sible manner.

Following the tetrahedral scheme, Bogomolov [7]
in 1941 proposed the theoretical function Agpp = Ap),
which until recently was highly regarded, since it pro-
vided the best reflection of the experimental variation
in A(p). The investigations of Lyalikov [15], Kaufman
{161, and the authors of this article [17] were based on
the tetrahedral arrangement for the particles of the
granular system,

In Bogomolov's model a tetrahedral particle ar-
rangement is assumed; each particle is surrounded by
a uniform gas halo whose dimensions increase with
increasing porosity; there is no direct contact with a
porosity in excess of 26%. In addition, Bogomolov as-
sumes that the transfer of heat in the granular
material is achieved primarily by molecular trans-
port from particle to particle through the medium
separating them, and he takes into consideration only
this form of heat transfer. In addition, he deals only
with the transfer of heat through the gas halo, ne-
glecting the numerous pores within the material, and
he proposes the following theoretical formula [7]:

hett _gn1p 48+ 0310 )
Ag p—26

Formula (5) which is graphically given by curve I in
Fig. 3 provides a qualitatively correct description of
the variation in the experimental function A(p) (the
cross-hatched area in this figure is the region of ex-
perimental values of ?\eff/xg for particles of mineral
origin). This made it possible to assume that such a
model reflects rather well the actual structure of the
granular systems and makes it possible to establish
the relationships characteristic of these. However, we
note the following shortcomings of Bogomolov's work:

1. The geometric model of a granular system does
not always correspond to a real system (the absence of
contacts with a porosity above 26%).

2. Not all of the pores in the granular medium are
considered in the determination of heat transfer,

3. The proposed function is applicable to granular
materials with low porosity (p < 60%), since a small
halo thickness was assumed in the derivation of for-
mula (5).

4, A mathematical error (also noted by Lyalikov
[15] exaggerating the final result by a factor of two
occurred in the calculation, Correction of this error
leads to a drop in the theoretical curve I to position II
(Fig. 3).

Apparently those processes not taken into consider-
ation by Bogomolov were fortuitously compensated by
the error in the calculations and formula (5) therefore
vielded excellent agreement with experiment for a

357

number of materials in the given interval of porosities,
thus gaining extensive acceptance in the literature.
The cited shortcomings in the Bogomolov model led
to the need for further research into the processes of
heat transfer through granular systems. Thus, for
example, proceeding from a tetrahedral arrangement
of particles in a granular system, Lyalikov introduces
contact between the particles. Here it is agsumed that
the contact is a result of the microirregularities of the
particle surfaces [15]. The author assumes that with
an increase in porosity the particles will spread apart
in the horizontal plane, remaining in contact, while
the height of the layer remains constant throughout.

Fig. 3. Graphical representation of various

theoretical functions: I and II) Bogomolov;

III and IV) Lyalikov; V) Kuni and Smith; VI)

Dulnev and Sigalova; VII) Vasil'ev; VIII)
Kaganer; IX) Prasolov.

We will demonstrate that these two assumptions are
mutually exclusive, If we regard the height of the ele~
mentary cell to be constant, on separation of the
spheres in the horizontal direction an air space should
develop between them. If there is no such clearance
and if contact is maintained, some of the spheres must
drop to the lower layers, i.e., the height of the layer
must diminish. The Lyalikov formula for the calcula~
tion of the thermal conductivity in granular materials
has the form

, 5
1 =0
A _ 6(100— p)(J_ . T |
he 100e \e oS, ’
I r
e =1 ——}igq (6)
As

where the parameter takes into consideration the trans-
fer of heat through the sphere; §, is the additional gas-
layer thickness through whose introduction we give
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Fig. 4. Representation of granular material as a system of sphere~
sh_aped particles: a) Tetrahedral arrangement of spheres with halo;
b) elementary cell,

consideration to the temperature jump occurring at the
boundary between the solid and the gas.

Lyalikov, just as Bogomolov, assumed that the
transfer of heat took place in the gas between two
spheres always in contact. Function (6) is shown graph-
ically by lines III and IV in Fig. 3. As we can see from
the formula, Agp/Ay is a function not only of the po-
rosity, but also of the particle dimension (r). Curve III
has been calculated for particles with d = 2r = 5 mm,
while curve IV represents particles with d = 0.5 mm.
The same graph shows the experimental values of the
effective thermal conductivity from the Lyalikov data
{the open circles) [15, 18] and those of other authors
{the solid circles) [12,19-21], for the thermal conduc-
tivities of systems consgisting of metal particles {d =
= 1-5 mm), As we can see, the extension of function (6)
to a broad class of granular materials leads to sub-
stantial divergence with respect to experimental data.

The authors [22, 23], dealing with a cubic and tetra-
hedral arrangement of grains, proposed a theoretical
formula derived in the assumption that the real gran-
ular structures occupy an intermediate position be-
tween a loose arrangement and the very densest, The
formula for the calculation of the thermal conductivities
of unbound granular materials, without consideration
of radiation or the transfer of heat through grain con-
tact, has the following form:

1
Mett P _L( 100

A, 100 2 kg 7
’ Al v
g =gy - (p—25.9) (g, —&,)/21.7. {n

The magnitudes of the parameters &; and ¢; were shown
graphically as functions of }\S/xg; g4 corresponds to a
cubic arrangement for uniform spheres (p = 47.6%),
while g; corresponds to a tetrahedral arrangement

{p = 25.9%). Function (7) for particles of mineral ori~
gin (\g/ Ag = 100) is shown graphically by curve V in
Fig. 3. The numerical coefficients in formula (7) are
defined by the geometry of the particles and their mu-
tual location, Function (7) yields values for the effec~
tive coefficient of thermal conductivity of the granular
materials of mineral origin that are smaller by a fac-
tor of 1.5-2 than the experimental data. Better agree-
ment is found for systems of metallic particles, Thus,

for a porosity of p = 40% the ratio Aeff/Ag, calculated
according to formula (7) for metallic particles (\g/ Ag =
= 10°~10%, lies within the range 12.5-18.5, which cor-
responds to the following values for the thermal con-
ductivities of systems of metallic particles in air:

Aeff = 0.35 W/m - deg (lead) and Aefy = 0.5 W/m - deg
{copper). The experimental thermal-conductivity val-
ues for the corresponding materials lie within these
limits,

In the model of the granular system proposed by
Dul'nev and Sigalova [17] the real particles are re-
placed by spheres and the region occupied by irreg-
ularities is treated as a halo of uniform thickness (o).
The sphere-halo system exhibits a tetrahedral ar-
rangement, as shown in Fig. 1g and in Fig. 4a. The
elementary cell of such a system may have the form
shown in Fig, 4b. Analysis of the process of heat
transfer in this cell yields the following relationship
between the effective thermal conductivity of granular
materials and porosity:

26% < p < 75%,

A eff

%(M 2y b bt he, pT5%,
g

M X2V b b,

he
A
—11,
i)

Z=293(1414—1), 2/ = 223

1.414—1"

_ n _ i/
V«A*—E’z, A—‘“/mp’ (8)

where Ay and A; are the radiation and contact com~
ponents of the thermal~conductivity coefficient.

The term X in these formula characterizes the
transfer of heat through the halo, while Z and Z' char-
acterize the heat transfer through the pores and V rep-
resents the transfer of heat in additional ways for a
porosity of p = 75%. Function {8) without consideration
of radiation and transfer of heat through the contacts
is shown graphically by curve VI in Fig. 3 {radiation
and contact thermal conductivity make up an insignif-
icant fraction (1~5%) of the total thermal conductivity

X=4.45(A1n
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of mineral-origin granular systems at room temper-
ature and at normal pressure for the filler gas).
Comparison of calculations carried out in accord-

ance with formula (8) and the experimental data showed
that this relationship may be extended to the class of
polydisperse materials in which the particles them-
selves are porous [25, 26]. In this case the over-all

_porosity should be divided into the external porosity p;
(the pores between the particles) and the internal po-
rosity py (the pores within the particles). The external
porosity is set equal to 40~50% (the porosity of sys-
tems of large monolithic particles varies within these
limits). The porosity of the particles is associated
with the over-all and external porosity by the following
relationship:

P— D
Pp= 100 — p. 100.
The effective thermal conductivity A, of a porous par-
ticle is calculated in accordance with the formulas for
solid porous materials [24]. Further calculation is
performed in accordance with formulas (8) with con-
sideration of the fact that A is a function of the external
porosity p;, while Ay is replaced by Ap

In {27] Vasil'ev extends the model for solid porous
systems proposed by Dul'nev [24] to granular mate-
rials. The transition to granular materials is accom-
plished by consideration of the thermal conductivity of
the gas clearance at the junction between two particles
and the thermal conductivity of the contact. The neces-
sary data on the height of the microirregularities and
the contact area are taken by the author [17,43]. The
theoretical formula proposed by Vasil'ev has the fol-
lowing form:

7\’eff }“S 1 A‘g ( h )2
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Here h, [, and L are the characteristic dimensions of
the pores and of the elementary cell, while their ratios
are functions of porosity [24]. The parameter & is a
function of the porosity as well as of the relationship
between the contact thermal conductivity and the ther-
mal conductivity of the base. Function (9) is shown
graphically by curve VII in the summary graph shown
in Fig. 3. The significant divergence between the the-
oretical data and those of the experiment is apparently
related to the inadequate agreement between the chosen
model and a real granular system.

In all of the above-considered investigations the real
granular systems were replaced by idealized structures
with long-range order. Studying the processes of heat
transfer through chaotic granular systems, Kaganer
does not assume long-range order and provides no
clear model of the system [28]. In deriving the expres-
sion for the effective coefficient of thermal conductivity
in such a system the author begins his study with an
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analysis of the heat transfer Q between two spheres, in

analogy with the mamner in which this was done in {7,

15,17].
The effective thermal-conductivity coefficient Aggr
of a granular layer is equal to
L
eff SAt ’

where Q is the heat flow through a surface of area S; h
is the height of the layer, corresponding to the temper-
ature difference At; S is the area of the layer referred
to a single grain.

The author assumes that the number N of contacts
between the spheres is distributed uniformly .in all di-
rections and in one of the directions is equal to N/6.
(We note that this assumption is obvious for chaotic
systems, whereas for ordered arrangements of grains
it may not be satisfied). In this case the relationship
between the heat flux Q between two spheres in the
presence of a single contact and the flow Q is given by
the expression

Q= QN/6.

In the following, in determining the area S, M. G.
Kaganer makes the implicit assumption of long~range
order in the arrangement of the grains. As a matter of
fact, the expression

Vs

p=1 1S
contains the assumption that the height h and bed area
S of any grain pair in the system, referred to a single
grain and to the space around that grain, are identical.
In a chaotic system the parameter S for various grain
pairs must be different in the general case. Moreover,
it is assumed that h = 2r remains constant with a change
in the porosity system.

The expression for the effective thermal conduc-

tivity of granular systems assumes the form

hee  N(100—p) (_1 In —2‘—S~—1), (10)
hg 200¢ e Mg
N
Ag

We will demonstrate that (10) changes into (6), de-
rived by Lyalikov for a tetrahedral grain arrangement,
For this we will assume in formula (6) that 6, = 0,
since Kaganer failed to take account of the tempera-
ture~discontinuity phenomenon, and we will assume
the number of contacts to be N = 12, since Lyalikov is
dealing with a tetrahedral arrangement. Consequently,
until now Kaganer had essentially been examining an
ordered system whose model corresponds to the Lya-
likov model.

For chaotically positioned particles Kiselev estab-
lished the relationship

N =116 0=

100

for the case of uniform particle distribution over the
volume [29]., This expression for N was subsequently
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substituted by Kaganer into (10). This operation makes
it possible to regard the system as chaotic.

Formula (10) does not satisfy the passage to the
limit Aeff = Ag for p = 100%. To eliminate this draw-
back, Kaganer artificially introduces additional terms
into this formula. The final expression for the calcu~
lation of the effective thermal conductivity of the gran-
ular materials has the form

et ~_£58(100—p)2( 1 -~ As .

: — 1
he 100 e e e

— 1—-»—Z—)+ 1. (10a)

The author provides no theoretical foundation for
the introduction of these additional terms. Graphically,
function (10a) for the case Ag/Ag = 100 is given by
curve VIII in Fig. 3.

Formula (10a) may also be used to calculate the
effective thermal conductivity of polydisperse struc-
tures, Here we consider two types of structure:

a} the grains are conglomerates of small spherical
particles;

b) the grains are cellular in structure.

In the first case, formula (10a) is used to deter-
mine the thermal conductivity X, of the grain consist~
ing of small particles, with the same formula used to
calculate the thermal conductivity of the entire mate-
rial (P\g is substituted for Ag). In the case of a cellular
structure the use of the Rayleigh-Eucken formulas {30]
and the Russel formula [10] is suggested for the deter-
mination of the thermal conductivity Ag of the cellular
grains, the calculation subsequently being carried out
in accordance with formula (10a). Reference [28] pro-
vides no specific suggestions as to the determination
of the external and internal porosities of the polydis-
perse system, thus introducing indeterminacy into the
calculations.

We note that the analysis of the transfer of heat
through the granular system, proposed by Kaganer, is
contradictory. Aswas demonstrated, indeterminingthe
parameter N the author regards the system as clhiaotic,
while in determining the function S = S(p) he makes the
implicit assumption of a long-range order in the sys-
tem. Moreover, there isno justificationfor the change~
over from formula (10) to formula (10a).

To calculate the heat transfer in high-porosity (p >
> 80%) granular materials, Prasolov treats the gran-
ular structure as a system of (solid-gas) parallel
planes [33]. Considering the effect of the continuous
pores, Prasclov subsequently proposes the function
Aeff = A{p), applicable to a wide range of porosities
[34]:

Pt ={2 [1+ TM(&%) ;
it

g 1.14p—14)100 { & )

)
2100 | A,

x{(—)ﬁ)—% 7 (100 — p) ( A _7:5\)]”1. (11)
Aa {1.14p — 14} hs Ry

(1.14p—14) 100 \ As A,

The effect of thermal conductivity for granular ma~-
terials is presented graphically in Fig. 3 as a function
of porosity, these functions having been plotted from

INZHENERNO-FIZICHESKII ZHURNAL

formulas (5~11), as proposed by various authors, It
was assumed in each of the cases that (A, + 1) is
small in comparison with the molecular thermal con-
ductivity, and that we can assume (A, + Ag) = 0. More~
over, cases were considered in which the particles
exhibit a thermal conductivity greater than that of the
gas-filler (\g/Ag = 100). It follows from Fig. 3 that
function {8) most closely reflects the actual shape of
the curve Agff = Ap).

Analysis of the various studies on the effective ther-
mal conductivity of granular systems under conditions
of normal gas pressure and low temperatures (not
above 20-30° C) permits the following conclusion: the
assumption as to the possibility of replacing a real
granular system by an ordered structure has been val-
idated experimentally. Also of interest is an analytical
study of the process of heat transfer through granular
systems with chaotic particle distribution., However,
this study should be carried out if it will yield results
no more cumbersome and no less exact than the anal-
ysis of ordered structures. At the moment, we know of
no work in which the system is logically treated as
chaotic,

Till now we have been speaking of the effect exerted
by the structure on the effective thermal conductivity
of a granular system, Here it was assumed that the
parameters Ag, Ag, Ar, and ), contained in these for-
mulas are known. Let us examine methods for the
calculation of these parameters in granular systems,

II. Separate Components of Thermal Conductivity in
a Granular System. The thermal conductivity coeffi-
cient \g for the particles of the material, as well as
the thermal-conductivity coefficient A, at normal pres-
sure, are taken from reference literature. According
to the molecular-kinetic theory of gases, the thermal
conductivity of the gas begins to diminish with a rise
in pressure if the mean molecular path A is of the
same order or higher than the distance 6 between the
heat-transfer surfaces. We know of the following form
for the thermal conductivity of a gas as a function of
pressure [31]:

R = el , {12)

where B is the coefficient defining the characteristics
of the gas and of the heat-transfer surfaces.

The reduction in the effective thermal conductivity
of granular materials with a drop in the pressure of
the gas filler is caused by the change in the thermal
conductivity of the gas.

Among the earliest works concerned with the in-
vestigation of the thermophysical properties of gran~
ular materials under conditions of reduced gas-filler
pressure we have those of Smolukovski [32]. Exam-
ining a powder containing grains of spherical shape
whose thermal conductivity is infinitely large in com-
parison with the thermal conductivity of the gas, he
proposed the calculation of the thermal conductivity
reff of the granular materials as a function of the gas~
filler pressure H according to the following formula
which should be treated as a generalization of experi-
mental data:
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xeﬁ=Mig(1+ ’ ) (13)

Ay H,

where M is a coefficient which is a function of A, and
p. The values of M are presented in [32] for several
granular systems.

In an analytical determination of the effective ther-
mal conductivity of a granular system as a function of
gas pressure the following method is generally em-~
ployed: the value of Ag from (12) {17,27,28,33-39] is
substituted into the formula for the effective thermal
conductivity of any of the structures. The fundamental
difficulties in this case are associated with the deter-
mination of the pore dimensions é of an actual system,
Let us examine how this problem is solved by certain
authors,

R. S. Prasolov uses the formal apparatus of the
molecular-kinetic theory of gases to determine the
average pore dimension 8, treating a chaotic structure
as a time-fixed pattern of molecular distribution, The
expression for & has the form [33, 34]

5o (Llin—10)
6(100 — p)

Using this expression and {12} it is possible to de-
termine the effective coefficient of thermal conductiv~
ity for granular materials in the case of reduced gas-
filler pressure from formula (11).

To calculate the thermal conductivities of materials
made of powders and loose fibers under conditions of
reduced pressures, V. M, Kostylev [40] derived a
formula in which the concept of a specific solid-phase
material surface is employed. For practical calcula-
tions with this formula it is necessary to have avail-
able data on the magnitudes of the specific solid-phase
surface of powder materials.

Formula (8), proposed by G, N, Dulmevand Z. V.
Sigalova, with consideration of (12)—the thermal con-
ductivity of the gas as a function of pressure—may be
employed to calculate the thermal conductivities of
granular materials over a wide range of pressure vari-
ations in the gas filler. The value of Ag should be ex-
panded for this purpose in expression (8) as per formula
{12). Here it should be borne in mind that for the
adopted idealized model of a granular material there
exists several types of gag intervals exhibiting various
dimensions. In the light of the foregoing, formulas (8)
assume the following form [26]:

26% < p<LT75%
Ay 7 X Z 3
e£f:_jﬁ(].i. B -+ B )+7\r+7\4c
D Hdp, H3,
p>75%
g Xz (14)
3 T
A (1 + 5. B
H &y, Hé,
v R
'“!" B )"," }Vr ; g
[
H‘Scell
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Here 6y, = 2r(A — [2/3]) is the mean halo dimension;
Op = 2r(1.41A — 1) is the meanpore dimension; 6,¢1; =
= 2(2)’rA is the height of the elementary cell.

Formula (14) can be substantially simplified if in
the place of 6y, 0p, and 0,e]] we introduce the aver-
age value of the pore size 6, calculated according to
the formula

n

7 .
8= 26/31/ 2 k;, i==ha, p, and cell,
] i=l
where kj is the coefficient by means of which we ac-
count for the relative effect of the i-th gas interval on
the coefficient of effective thermal conductivity, i.e.,
heat conduction resulting exclusively from molecular
transport.
It is obvious that with this definition of k;

n
Zkle-

f==1
The calculations yielded the following values of the
parameter &:

26% < p < 75% 5=2.1r(A-——§—>,

p>T75% &=2.8r (A--—?)—).
Formulas (14) then assume the form

26% <p< 7Y%
2 by X+Z
off T T
A B
1 I
+ HS

p>T75%

o hy X+Z 4V
off T, TR
A B
]. _
+H(S

’%“' }“r'*‘;\c

(15)

+ hr A+ R

’

Calculations according to (14) and (15) coincide sat-
isfactorily with the experimental data of an extensive
class of granular materials {41].

With consideration of {12}, M. G, Kaganer uses
formula (10a) to calculate the effective thermal con-
ductivities of granular materials for various gas-filler
pressures. This theoretical formula assumes the fol-
lowing form:

e = 0 {ﬂ—%Cin(l +2)n ae
: 74

-

where A, denotes the contact and radiative components
of the thermal-conductivity coefficient (determined
experimentally).

Although expressions for the constants 7 and 5 are
presented in [28], the author suggests that their values
be determined experimentally. Calculation with formu-
la (16), including the theoretical determination of the
constants [ and 5, yields a deviation from the experi-
mental data reaching as high as 30-100% (for example,
Kannuluik and Martin [42]). '

Let us turn to an examination of the contact com-
ponent A, of the effective thermal conductivity of gran-
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ular materials. Contact heat transfer is a function of
the physical and mechanical properties of the material,
as well as of the contact area which is governed by the
pressure force exerted on the material {43]. In the
case of a granular material poured out freely, this
force will be the weight of the layers on top; on appli-
cation of an external load, the contact area and conse-
quently, the contact thermal conductivity will increase.
The contact thermal conductivity for granular mate-
rials as a function of the external load A can be ap-
proximately calculated from the formulas proposed in
[28,44].

Kaganer calculates the thermal resistance of two
grains that are in contact by means of the formulas for
the contact between semi-infinite bodies [43] and dem~
onstrates that for a spot-contact radius ¢ considerably
smaller than the particle diameter d (d/a > 10) such a
substitution is permissible, He defines the spot-con-
tact radius according to the Hertz formula [45]. Using
his model of a granular material in the form of cha-
otically distributed spherical particles, Kaganer sug-
gests the following formula for the calculation of the
contact thermal conductivity as a function of external
load [28]:

_3.37(100 — py*/s hg A'/s
B 100%E"/s
where Afpee is the thermal conductivity of the granular
material in the state of free flow.

Semiempirical formulas have been derived in [44] to
calculate the contact thermal conductivity of granular
materials as functions of the external load:

for loads from 0 to 3 - 10° N/m?*

b1

}"c ‘i‘}"free ’ (17)

he = Afpe b ——>mn Al kg, (18a)
¢TI 6.108 A "
for loads from 3 - 10° to 16 - 10° N/m?
. ks 1. .,
he = Moo TS ke A%y (18b)

E'% A

Here A is a function of the porosity determined ac-
cording to formula (8), and ky, and kp, are empirical
coefficients which are functions of the external load.
As demonstrated in [44], for particles of mineral origin
(\g < 1-2 W/m - deg) Afpee = (2—15) X 107 W/m - deg,
and for systems of metallic particles Afppe = (3—10) x
x 10~ W/m . deg. The values of the coefficients ky, and
ky, are also given in [44].

It follows from formulas (17)—(18) that the contact
thermal conductivity of a granular material is indepen-
dent of the particle dimensions, but is defined exclu-
sively by the mechanical (E) and the physical (Ag)
properties of the particle material, the porosity (p) of
the system, and the external load (A), Comparison of
calculations according to (17) and (18) with numerous
experiments [25, 46, 47] demonstrates that these for-

*Formulas (18) have been taken from reference [44].
In the similar formulas in this paper E and A should
be used in units of kg/em? rather than in units of N/m?,
as proposed in [44].
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mulas can be used for tentative calculations, The ex-
perimental and theoretical data in this case may differ
by factors of 2-3,

An expression is given in [48] for the heat flux
through thermal insulation as a result of contact con-
ductivity in the state of free-flow coverage. However,
the application of the proposed formula is difficult since
it contains an additional parameter—the coefficient of
the internal friction of the granular material—whose
determination represents an independent problem,

The experimentally determined Appqe includes the
radiation component, As mentioned earlier, at room
temperature this component is small for granular ma-
terials. However, with a rise in temperature its value
increases.

An approximate evaluation of the radiation com-
ponent of the effective thermal conductivity of granular
materials is presented in a number of papers. A re-
view of these is presented in the monograph [2]. In
studying radiative heat exchange, as a rule, we treat
the granular material as a system of nontransparent
screens and the expression for the radiative component
Ap has the following form:

Ay =kerT?8,

where k is a numerical coefficient which is a function
of the adopted model of the granular system, No con-
sideration is given in these works to the scattering and
absorption of particle radiation. The indicated model
for radiative transport is somewhat too coarse, which
serves to explain the unsatisfactory agreement with
experiment,

Another approach is possible in the investigation of
heat transfer by radiation through a granular system,
It may be based on the representation of the granular
material in the form of some homogeneous semitrans-
parent medium characterized by integral values for the
absorption and scattering coefficients. An analysis of
the processes of radiative heat exchange in such media
is presented in {49-54]. However, we know of no pa-
pers in which this method is employed for an analysis
of the radiative component of the thermal-conductivity
coefficient for granular materials.

In conclusion we note that the processes of molec-
ular heat transfer through granular materials as stan-
dard as well as at reduced pressure have now been
studied both theoretically and experimentally in rather
complete detail, Contact heat transfer can be evalu-
ated at the moment only tentatively. The processes of
radiative heat exchange in granular media, as well as
the effect of moisture on the effective thermal-conduc-
tivity coefficient, have not been studied so extensively.
It is clear that these last two lines in the study of heat
transfer require more persistent attention on the part
of researchers.

NOTATION

heff is the effective thermal conductivity of granular
material; A is the thermal conductivity of a gas; A, is
the thermal conductivity of a gas at a normal pressure;
Ag is the thermal conductivity of material of particles;
Ao is the contact thermal conductivity; A, is the radia-
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tive thermal conductivity; p is the porosity; r is the
radius of particles, N is the number of contacts; H is
the pressure of gas-filler; d is the size of pores; A,
is the mean free path of gas molecules at a normal
pressure Hy; E is the elasticity modulus of material
of particles; A is the external load; ky, and ky, are the
empirical coefficients; T is the temperature; ¢ is the
emissivity.
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